Turbulence in Cumulus Clouds

Literature Seminar, MIM, speaker: Josef Schröttle, April 2012

Lehmann, K., Siebert, H., and Shaw, R. A., 2009: **Homogeneous and Inhomogeneous Mixing in Cumulus Clouds**: Dependence on Local Turbulence Structure, *JAS*

Gerber, H., G. Frick, J. Jensen, and J. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. *J. Meteorol. Soc. Japan*

Homogeneous versus Inhomogeneous

Definition

Homogeneous -

Inhomogeneous Mixing

Mixing occurs **rapidly**, temperature and humidity field are homogeneous. All droplets experience similar conditions.

Slowly, on the edge between moist and dry air, inhomogeneous mixing takes place. Some droplets evaporate quicker than others depending on their environment.

Concept

Relationships

$$Da = \frac{\tau_{mix}}{\tau_{react}}$$

$$\tau_{mix} = \left(\frac{l_e^2}{\epsilon}\right)^{1/3}$$

$$\tau_{react} = \frac{D^2 (F_k + F_d)}{8(S-1)}$$

Transitional length scale l_* (Lehmann et al. 2009)

Liquid Water Content (LWC)

high *l**
 low *l**

Droplet Spectra

Entrainment and LWC (Gerber et al. 2008)

Entrainment length scales (Gerber et al. 2008)

Discussion

Range of eddy sizes *le*

- 100 m **cutoff** in situ aircraft measurements, LES \ge 50 m
- *l** and Da characterize
 homogeneous or inhomogeneous entrainment
- Inhomogeneous, if *l** within inertial subrange
- Coalescence and varying saturation S influence τ_{react} , stochastic model developed

Conclusions

Entrainment changes characteristic parameters: ε, ℓ*, S and Treact

• ε decreases due to decrease in buoyancy, higher up in the cloud, possibly increases initially at cloud edges.

• This decrease in $\boldsymbol{\epsilon}$ leads to a decrease in $\boldsymbol{\ell}$ * and possibly leads to rather **heterogenous** mixing.

• **Saturation** ratio **S** in the environment of the cloud increases, locally.

• Thereby, **N** decreases, droplets evaporate quicker and τ_{react} decreases. This favors **homogeneous** mixing, as $\mathfrak{D}a$ increases.

Outlook: Radiative Cooling at Cloud Top

Mellado J. P., 2010: The evaporatively driven cloud-top mixing layer. JFM

a) Buoyancy field from the side after ≈ 8 s

- *b) after* ≈ 15 s
- c) from below after ≈ 15 s