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1. Introduction 

„If the earth were greatly reduced in size, while maintaining its shape, 
it would be smoother than a billiard ball!“ (Ronald B. Smith, 1979) 

 

Föhn in the Alps, Bora at the Mediterranean and 
Chinook in the Rocky Mountains are all downslope 
winds of major mountain chains responsible for 
local temperature changes, cloud formation, and 
rain. Field studies (Mayr 2004, 2006, 2008) like the 
Mesoscale Alpine Program (MAP 1999), numerical 
models (Smith 2005, Durran 2002), and laboratory 
experiments (Etling 2010) in the last ten years 
have emphasized the importance of mountains on 
the planet’s weather. For high school and 
university students the question remains: Why do 
mountains, small in size compared to the planet’s 
radius, have such a great influence on the weather 
and how do mountains affect the atmospheric 
circulation? 
 
A weather map of Europe for a typical Föhn day in 
southern Germany is shown in Fig. 1.1. A low 
pressure system over Spain and France creates an 
anticlockwise circulation. Air is forced to flow from 
northern Italy to Germany over the Alps. Air 
temperature is more than 5 degrees warmer in 
southern Germany than in Italy. On the windward 
side of the Alps convective clouds and rain develop 
(Fig. 1.2). The northward wind creates higher 
pressure on the windward side, which is visible on 
a synoptic scale by isobar deformation, the so 
called Föhn nose (Fig. 1.3). These are characteristic 
synoptic conditions for alpine Föhn (Goler 2009). 
 
The goal of this thesis is to explain the design and 
implementation of a Föhn experiment which can 
be performed in the MIM laboratory for teaching 
purposes. First of all, various Föhn theories are 
summarized in Chapter two. An experiment for 
students in the laboratory will be described in 
Chapter 3, which demonstrates the typical Föhn 
features, and the results presented in Chapter 4. 
Furthermore, a more complex experiment a little 
bit closer to what is observed in the atmosphere 
will be set up and observed in Chapter 5. Finally, a 
numerical model will be introduced in Chapter 6 
for students to do their own simulations. 

 

Fig. 1.1: Synoptic situation over 
Europe during a Föhn event in the 
Alps on Nov.  5 t h 2008 from wetter3.de. 
Black lines show the height of the 
500hPa pressure surface.  White lines 
show pressure at sea level and the 
shading shows thickness between the 
1000hPa and 500hPa level , depending 
on temperature.  

 

Fig. 1.2: Thickness of the  lower cloud 
layer – indicating cloudy sky over 
northern Italy.  

 

 Fig. 1.3: Föhn Nose – isobar 
deformation in lee (north) of the Alps.  
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2. Mountain Wave Theory 

A number of Föhn theories have been described by Steinacker (2006) and are outlined here. 
All schematics on the right are from the coresponding article by Steinacker. 
 
In mountain meteorology of the 19th century an 
interesting phenomenon in the Alps during the 
winter months was a sudden rise in temperature 
together with strong downslope winds. Initially 
this observation was explained by the advection of 
warm air. Hann (1866) however introduced the 
thermodynamic Föhn theory (Fig. 2.1a) for the 
Alps, which was accepted, after observing the 
Föhn in Greenland. This theory explained the 
warming in lee of the mountains as ascending air 
on the windward side of the mountain being 
forced to rise and condense, cooling at the moist-
adiabatic laps rate, and subsequently sinking on 
the lee side of the mountain and warming at the 
larger dry-adiabatic lapse rate. On the windward 
side the condensed water falls out as rain. Diabatic 
effects, such as radiation, evaporation and 
condensation are studied further. 
 
In Switzerland rain and high clouds were common 
on the windward side, while in Austria 50% of the 
observed Föhn cases could occur without any rain 
at all (Seibert 1990). Consequently the air must not 
always rise on the windward side (Fig. 2.1b). 
 
One question regarding these theories was how 
the warm air from above can replace the heavier 
cold air on the ground as it descends. Therefore, 
Steiff-Becker developed a so called vertical 
aspiration theory in 1931, which states that 
warmer air moves downwards by eroding the cold 
air on the ground from above (Fig. 2.2a). 
 
A synoptic approach towards cold air aspiration 
was proposed by Ficker, also in 1931. He 
introduced the horizontal aspiration theory (Fig. 
2.2b). The cold air is removed here by a low 
pressure area at the surface which moves closer to 
the mountain. The cold air is forced to flow away 
from the mountain towards the low pressure area. 
Later on various Föhn features were studied. 
Gravity waves can form behind a mountain when 
air flows over it, and can be observed in the 

Fig. 2 .1a: Classical thermodynamic 
model: Adiabatic cooling of the 
uprising air, condensation and 
rainfall on the windward side.  
Adiabatic warming and evaporation 
on the lee side of  the mountain.  

 

Fig. 2 .1b: Here the air  does not rise 
but only descends from greater 
height. No clouds form on the 
windward side.  

 

Fig. 2 .2a: In order that the warm air 
reaches the ground  it erodes the 
lower colder layer of  air  from the top 
down as it drifts  away. The rotating 
arrows indicate the turbulence  on the 
surface of the colder layer.  

 

Fig. 2 .2b: Here the colder layer on the 
ground is aspirated horizontally from 
a low pressure area.  
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potential temperature contours (Fig. 2.3.a). A 
wavelength of 5-10 km is indicated for the 
mountain with a height of 3 km here. These lee 
waves, a mesoscale phenomenon were first 
discovered above the Hirschtal, a valley in Silesia, 
in 1933 by Hirth a popular glider pilot (Dörnbrack 
2006). He looked closely at a well known lenticular 
cloud above the Hirschtal and wondered why it did 
not move, despite the strong winds. Hirth’s 
observations lead to new concepts in mountain 
meteorology. After collecting data from a glider 
flight tournament in the Riesengebirge, a German 
mountain Range, Küttner published about the 
development of mountain waves due to buoyancy 
oscillations (Küttner 1938, see below). Such 
oscillations allow the gliders to rise to high 
altitudes (Dörnbrack 2006). 
 
The presence of lenticular clouds indicates Föhn 
activity. The cloud forms in the cusp of a gravity 
wave when the air is lifted up. Several lenticular 
clouds can follow behind each other or can be 
stacked on top of each other. Figure 2.3b was 
taken by a friend in Austria on a Föhn day and 
shows a lenticular cloud. The formation of a 
lenticular cloud requires that sufficient moisture is 
present so that the lifted air parcels can condense. 
Gravity waves in the atmosphere (Fig. 2.3c) can 
extend horizontally over a few hundred kilometers 
(Baines 1995). The forced oscillation of an air 
parcel as it rises over the mountain is analogous to 
a swinging pendulum as a damped oscillator. As 
the air rises, it cools adiabatically, becomes colder 
and heavier than the environment in a stably 
stratified atmosphere. As it descends, the opposite 
effect takes place: the air parcel warms 
adiabatically and becomes warmer than its 
environment. As a consequence it rises again and 
the process repeats until it is fully damped. These 
up and down oscillations are called buoyancy 
oscillations (Meted 2004). 
 
In 1944 Frey introduced as driving mechanism of 
the Föhn a solenoid field which develops (Fig. 4) in 
the mountain area, when the pressure gradient 
forces the air to flow over the mountain (Frey, 
1944). Isobars and Isotherms cross and cause 
baroclininc instability, which generates a solenoid 

Fig. 2 .3a: The isentropes are slightly 
tilt due to blocking on the windwar d 
side and form lee waves.  

 

Fig. 2 .3b: Lenticular Cloud above 
Stubai  Valley – Sebastian Müller .  

 

Fig. 2 .3c: A series of cloud lines  due to 
gravity waves – metvuw.com. 

 

Fig. 2 .4: Isobars and Iseotherms form 
a solenoid field . The air  is rotating.  

 

Fig. 2 .5a: Cloud wall expanding to the 
lee side of  the mountain. The arrow 
indicates rapid descend of cold air 
from the cap cloud.  
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field and moves the warm air to the ground (Frey, 
1944). Synoptic scale variations of the temperature 
field can furthermore explain sudden Föhn 
intermissions (Frey, 1953). 
 
Blocking or partial blocking leads to a deep, cold 
pool of air upstream of the barrier. As air rises, 
clouds form and huge wall cap clouds (Mayr 2006) 
expand over the mountain top. A cloud wall visible 
from the lee side is the basis for Roßman’s 
waterfall theory from 1950. He suggests that the 
air in the cloud cap is colder compared to its 
environment and sinks rapidly (Fig. 2.5a). On its 
descent it warms adiabatically, the cloud water 
evaporates and the cloud dissolves (Fig. 2.5b). 
 
Many of the mesoscale observations mentioned so 
far can be explained with the hydraulic model. In 
this theory Schweizer (1953) compares the 
atmosphere to a shallow water system consisting 
of a single or several layers. In the atmosphere the 
homogeneous layers are determined by constant 
potential temperature and separated by an 
inversion (Mayr 2006). 
 
The hydraulic model includes features such as cap 
clouds, hydraulic jumps, lee waves and rotors, 
which have been thoroughly investigated during 
the Mesoscale Alpine Program (MAP). In recent 
years considerable research has been published 
and observations have been compared with 
numerical studies and laboratory experiments 
(Smith 2005, Durran 2002, Mayr 2004 and 
Dörnbrack 2006). A good summary of the concept 
and features can be found in the Meted Program 
from UCAR: “Mountain Waves and Downslope 
Winds” (2004). 
 
A hydraulic jump (Fig. 2.6a), also referred to as 
turbulent bore, can occur in the atmosphere, 
oceans and rivers. It is caused by rapid energy 
transformation from potential to kinetic energy of 
the fluid parcel or vice versa. During this 
discontinuous process, some energy dissipates into 
turbulence (Simpson 1997). For continuous 
transfer the result is an undular bore, referred to 
as gravity wave (Fig. 2.3a) in the atmosphere and 
the energy travels with the wave. 

 

Fig. 2 .5b: Cap cloud of a fjord in 
Norway – Axel Hennig .  

 

Fig. 2 .6a: Cold air on the ground and 
warm air above descending rapid ly on 
the lee side lead to a hydraulic jump.  

 

Fig. 2 .6b: Hydraulic jump – 
photographed in 1950 in the Sierra 
Nevada. In the jump region  sand is 
lifted up and rotor clouds form.  

 

Fig. 2 .6c: Surfer’s  wave – a hydraulic 
jump in the Eisbach a river in the 
English Garden in Munich – 
münchen.de.  
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The hydraulic jump observed in the Sierra Nevada (Fig. 2.6b) in March 1950 by Robert 
Symons shows dust rising left, downstream of the mountain range. After air flows over the 
mountain it descends very quickly. In the jump region it rises up again in a turbulent way. 
Clouds develop due to the uprising air, which reaches a saturated level and water 
condenses. A special type of cloud that forms in the jump region with a vortex structure is 
the Rotor cloud. Below a gravity wave, rotors can develop also even in a clear sky, which can 
be hazardous to pilots (Dörnbrack 2006). Although, wind speeds can be very high, for air 
traversing the mountain, the cloud is stationary – since the wave on which the cloud forms is 
stationary. An example of a hydraulic jump which can be regularly seen in Munich is the 
surfer’s wave in the Eisbach in the English Garden (Fig. 2.6c). 
 
This work will focus on the hydraulic model of the Föhn, which explains features like 
hydraulic jumps and lee waves. These features are fundamental for cloud formation in the 
mountains. By concentrating on the hydraulic features of the Föhn, it is possible to 
investigate airflow over mountains in the meteorological laboratory here in Munich. 
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Shallow water Equations 
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3. Experiment Construction for a Single Layer 

The Meteorology Laboratory of the Ludwigs Maximilians University in Munich has a tank for 
gravity current experiments (Fig. 3.1) with dimensions 250 cm long, 25 cm wide, and 25 cm 
high. In this tank flow relative to an obstacle can be generated by pulling the obstacle 
through the tank (Chapter 4) and the 
subsequently developing waves observed. In 
the case of a wave length λ >> water depth 
H the experiment is an example for a typical 
shallow water system (Erhardt 2007), which 
can be comparable to the atmosphere 
(Schweitzer 1953) under certain conditions 
explained in the following section. 
 

3.1 Similarity Rules 

In order to compare model experiments in the laboratory with observations of the Föhn in 
the atmosphere it is crucial to have similar forces acting (Cohen 2008). As water is used 
instead of air, the forces working on a water parcel need to be compared to the forces 
working on air parcels in the atmosphere. Both phenomena can be described with basic 
hydrodynamic equations such as the Continuity (Eq. 3.1), Bernoulli (Eq. 3.2), Euler (Eq. 3.3) 
and Navier Stokes Equation (Eq. 3.4) with velocity vector v


, pressure p , fluid height h, 

orography profile e, maximum mountain height hm, density  , kinematic viscosity , coriolis 

parameter f, length scale L, average velocity V, undisturbed fluid height H far away from the 
mountain, and gravity g. 
 
The forces present are pressure gradient, friction, Coriolis, and gravity force. With these 
forces as non linear terms in the equation, it is not enough to downscale the problem 
linearly in every variable. Dimensional analysis of the basic equations is necessary, which 
leads to the non dimensional numbers such as the Reynolds, Rossby, and Froude numbers 
(Tab. 3.1). They represent a relationship between the forces acting in the experiment. Of 
special importance in these experiments is the restoring force, which is the gravity force. For 
the two layer experiment in Chapter 5, the reduced gravity force will act, as in the earth’s 
atmosphere, when an inversion separates two layers of different temperature (Smith 2005). 

Fig. 3 .1: Schematic of the gravity current tank 
in the Meteorology Laboratory in Munich .  
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To analyze the Föhn experiments, the important non dimensional number is the Froude 
number (Baines 1987, 1995). As in the diagrams presented by Baines, it will be used to 
identify the flow regime (Chapter 5) and compare atmospheric observations with the 
laboratory experiments in single layer models as well as two layer models (Chapter 6). The 
Froude number is usually introduced as a ratio between the velocity a fluid parcel and the 
shallow water wave speed (Landau & Lifshitz 1987, Cohen 2008). In the laboratory, the 
parameters of the Froude number describe fluid velocity, gravitational acceleration, and 
water depth. In nature, the variables are typical wind speed, buoyancy, and height of the 
observed potential temperature surface (Chapter 2). 
 

 
Fig. 4.1: Schematic of the single layer experiment with profile  
of the orography e, water depth h, p ulling velocity V and water depth 
h∞=H far away from the obstacle and maximum mountain height h m .  

 
Not all non dimensional variables can coincide between laboratory experiment and natural 
observation. Thus only an optimization is possible here. The Reynolds number is a measure 
for turbulence (Cohen 2008). In the atmosphere it is six dimensions bigger than in the 
laboratory experiment (Tab. 3.1), which means that the flow in the gravity current tank is 
more laminar than in nature. This offers the possibility to study the laminar flow more 
closely and to understand it better before including turbulent effects in the students 
experiment (Chapter 7). Furthermore, the Reynolds number measures the ratio between 
acceleration and viscous effects. In the laboratory and in nature, acceleration is several 
magnitudes larger than viscous forces. 
 
The coriolis force is only one dimension smaller compared to acceleration for single 
mountains in the Alps with a wind speed of 10 m/s and a mountain length of order 10 km 
and f=10-4 1/s. For larger mountain ranges such as in Greenland the Coriolis force may not be 
neglected (Sprenger 2008). The presence of the Coriolis force would make the students 
experiment more complicated. Fortunately, laboratory environment is far away from being 
influenced by Coriolis force (Tab. 3.1). Thus, viscosity and the Coriolis force will be neglected 
in the experiments presented here. 
 

  Alps Laboratory 

Rossby number acceleration : coriolis force 10 > 1 1000 >> 1 

Reynolds number acceleration : friction 1010 104 

 

Table 3.1: Rossby and Reynolds number calculated for laboratory with 20°C  
and density of  standard atmosphere.  
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For constructing obstacles with similar properties as real mountains, the obstacle height is 
important (Baines 1987), as well as the length scale described by the horizontal wave 
number of the obstacle (Smith 1979). 
 

3.2 Mountain Shape 

 
 

 

 

  
 

Mountain I Mountain II Mountain III 
 
 
 
Three different types of mountains were constructed (Tab. 3.2), beginning with a parabola 
shaped mountain (mountain I) similar to Long’s experiment (1954), with dimensions 24.5 ± 
0.1 cm long and 4.3 ± 0.1 cm high. It was deformed to a two-dimensional Gaussian shape 
mountain (mountain II), now 12.5 ± 0.1 cm long and 4.3 ± 0.1 cm high. A similar mountain 
has been used by Wedi (2003) and Durran (2002) for numerical studies. Finally a three-
dimensional Gaussian cone was modeled (mountain III) with same dimensions as mountain 
II, but rotationally symmetric, similar to an idealized volcano such as Mount Fuji, where Föhn 
effects such as lenticular clouds have been observed (Baines 1995).  
 

 
Fig. 3.2: Schematic slice through the parabola shaped mountain .  
(1) Metal weights, (2) Lego, and (3) Modeling clay.  

 
The mountains were built using Lego (Fig. 3.2 - 2). Metal weights were included in the 
mountain (Fig. 3.2 - 1) to prevent the mountain from floating. To make the surface smooth 
modeling clay (Fig. 3.2 - 3) was spread on top of the mountains. It was crucial to leave a gap 
of 1 cm between the ends of mountain I and tank wall, so that water can flow besides the 
mountain and prevent an upstream accumulation of water when the mountain is pulled. For 
mountain II, the Gaussian ridge, more space was left on each side between the ends of the 
mountain and tank wall, so that the mountain was only 16 cm wide. To make the mountains 
move smoothly in the tank when they are pulled all mountains were set on a Lego plate with 
a width of 25 cm as wide as the tank. 
 

3.3 Pulling Mechanism 

To create a flow over the mountains (Fig. 3.3 - 1), similar to a wind over the Alps, they had to 
be pulled through the tank. A similar concept was used by Long (1954 and 1955). At first, a 
simple hand drill connected with kite string to the mountain was used to pull the mountain 
at a relatively constant speed through the water. The kite string (Fig. 3.3 - 2) was fixed inside 

Table 3.2: Types of mountains used in the experiments . Mountains I  and II  
are two-dimensional ridges, while mountain III is a three -dimensional cone.  
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the mountain on a weight. Later on another string on the opposite side of the mountain was 
attached to allow the mountain to be pulled in each direction, and thus did not have to be 
taken out of the tank and returned to the starting end. As a result the water was disturbed 
less. 
 

 
Fig. 3.3: Schematic of the final pull ing mechanism  implemented  
 inside the gravity current tank .  (1) Mountain,  (2) kite string,  
(3) suction cup with hook, and (4) guide.  

 
The hand drill was replaced by an electrical motor, where the speed could be regulated. 
Nevertheless the motor together with the mountain was very inertial and reacted only 
slowly when the speed was increased. In the end pulling the kite string by hand seemed the 
best way, as the speed could be increased quickly and a large range of velocities could be 
covered in one pull. Due to its ease, this last method seemed appropriate as the student 
pulling the mountain could also stand in front of the tank and view the flow. 
 
A problem arose when the mountain was pulled to one end of the tank where it always lifted 
off the tank bottom due to the vertical component of the pulling force. To solve this 
problem, hooks attached to suction cups were fixed on both ends on the bottom of the tank. 
The kite string passed through the hooks (Fig. 3.3 - 3) and then through a guide (Fig. 3.3 - 4) 
at the edge of the tank and could be pulled by hand. 
 

3.4 Video Documentation & Analysis 

 

 
Fig. 3.4: Schematic of camera set up and gravity current tank from above.  
(1) Digital camcorder,  (2) tripod movement, (3) markers, (4) mountain puller .  

 
A number of different documentation methods were trialed. Several cameras helped to keep 
records of the stream patterns observed in the gravity current tank. Initially a small wireless 
camera was set on top of the hill and moved along the stream in order to get a stationary 
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image of the flow pattern in front of the hill. Unfortunately the quality of this camera was 
not sufficient. 
 
Mostly used was a regular digital camcorder (Fig. 3.4 - 1) set on a tripod with wheels to allow 
the camera to be moved along the tank. To maintain a constant distance from the tank, a 
marker was placed on the floor about half a meter away from the tank (Fig. 3.4 - 2). The 
camera assistant moved the tripod with the same speed as the mountain was moved by the 
experimenter (Fig. 3.4 - 4), thus allowing a close up of the flow pattern to be recorded. 
 
For complex topography, faster relative flows, or for smaller scale analysis, a slow motion 
camera recording at 300 frames per second was used. As mostly two dimensional flow 
patterns were analyzed the camera was also set on the tripod, focusing at right angles to the 
tank. To investigate more complex orography flows this camera could be placed at different 
angles relative to the tank.  
 
The movies from the video camera were analyzed using “Kino” in Linux which proved to be 
very useful. It allowed frame-by-frame analysis, along with showing a scene in slow motion. 
The time interval was 400 ms, which is the difference between the single frames with a 
regular camcorder. From single frames it was possible to measure, for example, wave 
amplitude or distance from the mountain, based on reference markers (Fig. 3.4 - 3) by 
converting pixels to cm. The markers a length of 10.5 ± 0.1 cm and were set every 20 ± 0.1 
cm to provide a basis for velocity measurements on the computer. The results were 
documented and analyzed with “Excel” tables (DVD). In the following Chapter typical 
atmospheric Föhn features (Chapter 2) were replicated in the MIM laboratory. 
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4. Laboratory Results for a Single Layer Model 

The first step to model flow over an obstacle involved using a single layer of fluid. These 
experiments are based on a general theory of Peter Baines (1987 and 1995) who identified 
flow regimes of flow over an obstacle in a shallow water tank. Similar experiments have 
been conducted by Long (1953, 1954 and 1955) and just recently by Etling (2010). The flow 
patterns strongly depend on Froude number and mountain height relative to the water 
depth. To obtain a certain Föhn feature (Chapter 2) that is characteristic for the observed 
flow regime, water depth H and pulling velocity V are varied. Gravity waves (Section 4.1), 
hydraulic jumps downstream (Section 4.2) and upstream (Section 4.3), as well as, wave 
breaking (Section 4.4) are observed.  

4.1 Gravity Waves 

Gravity waves have an interesting structure in the atmosphere, visible when there are 
lenticular clouds (Chapter 2). Detailed studies in the Mesoscale Alpine Program described by 
Smith (1976, 2002 and 2005) motivate their investigation and understanding for students 
here in the laboratory.  
 

 
Fig. 4.1a: One wave cusp after 2.2 seconds  
as the mountain is accelerated towards the left .  

 

 
Fig. 4.1b: Wave with two cusps a fter 2.6 seconds.  

 

 
Fig. 4.1c: A wave train with several cusps  
forms after 3.2 seconds as the mountain  
approaches the left end of  the tank.  
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Linear Gravity Wave 
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(Eq. 4.3) 

 
Standing wave Vcp 

   

(Eq. 4.4) 

To model gravity waves, mountain I (see Section 3.2) is used with a water depth of H = 17.5 ± 
0.1 cm and an average pulling speed of V = 54 ± 1 cm/s. For this experiment the Froude 
number is F = 0.4, and the non dimensional mountain height is hm/H = 0.3. The wave trough 
of the water surface above the mountain (Fig. 4.1a) indicates a subcritical flow, as discussed 
and put in general context with the diagram of possible flow regimes (Fig. 4.8). 
 

 One Cusp 
(Fig. 4.1a) 

Two Cusps 
(Fig. 4.1b) 

Wave Train 
(Fig. 4.1c) 

Time T [s] 2.2 2.6 3.2 

Pulling Velocity V [cm/s] 41 56 60 

Froude Number F 0.4 0.4 0.5 

Wavelength of tail cusp λ *cm] 18 14 - 

Amplitude of first cusp a [cm] 1.8 1.8 2.5 
 

Table 4.1: Measured parameters in the gravity wave experiment  

 
The trough develops further to a standing wave above the mountain with a horizontal wave 
length of 16 ± 1 cm and a tail of several cusps (Fig. 4.1b and 4.1c) moving towards the right 
(Tab. 4.1). The amplitude of the wave train decays from a maximum of 2.5 ± 0.1 cm relative 
to the mountain for the first wave to 0.5 ± 0.1 cm for the last wave, and resembles a damped 
harmonic buoyancy oscillation (Chapter 2). The tail of the wave is hard to follow, due to its 
rapid continuous development. The estimated tail speed of 19 ± 5 cm/s can only be an 
approximation and a larger error is involved compared to the pulling velocity. Nevertheless, 
the tail is clearly slower than the mountain. 
 
In the atmosphere such steady waves are only possible (Smith 1979), when the phase 
velocity of the wave matches the mean flow speed (Eq. 4.4). Consequently, the magnitude of 
the pulling velocity must be equal to the phase velocity. The phase velocity (Eq. 4.2) is 
calculated from the dispersion relation (Eq. 4.1) for linear gravity waves (Cohen 2008) of 
finite depth (Landau & Lifschitz 1987) without surface tension (Grimshaw 2007). Here the 
phase velocity is not the typical shallow water wave speed, because h2λ and therefore 
tan(kh)  1 where       . The calculated average phase velocity of 50 ± 3 m/s is 
comparable to the average pulling velocity of 54 ± 1 cm/s. The dominating term in the 
calculated group velocity (Eq. 4.3) equals half that of the phase velocity. This leads to a 
dispersive effect apparent in the observation: the tailing wave cusps further to the right are 
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slower due to their shorter wave length (Fig. 4.1c, Tab. 4.1). The calculated group velocity of 
25 ± 3 cm/s is a bit larger than the measured 19 ± 5 cm/s but within the error range. 
 
As the Froude number increases due to faster pulling and a greater relative speed, the 
amplitude of the wave is observed to increase (Tab. 4.1). This effect can be explained by the 
continuity (Eq. 3.1) and Bernoulli equations (Eq. 3.2). When more water is flowing in less 
time over the obstacle, it has to flow faster. Blocking effects can be neglected here within 
the homogeneous layer (Baines 1995). Thus, potential energy is transferred into kinetic 
energy (Eq. 3.2). Faster fluid particles have more kinetic energy and less potential energy, 
which leads to a lower height of the water directly over the obstacle (Eq. 3.2) and an 
increase in wave amplitude (Fig. 4.1) from 1.8 to 2.5 cm (Tab. 4.1). In all gravity wave 
experiments mountain I produced the largest wave amplitudes due to its larger cross-
sectional area. 
 
The gravity wave experiment in the laboratory here can be compared to observations in the 
atmosphere (Chapter 2) and numerical simulations (Durran 2002, Smith 2002 and Chapter 
6). Over the complex topography of the Mont Blanc mountain range a vertical cross section 
of the atmosphere could be recorded using backscatter Lidar techniques on the DLR Falcon 
plane (Smith, Volkert 2001). Horizontal wavelengths of 15 km and amplitudes of order 1 km 
were visible in the cloud patterns. In numerical simulations (Durran 2002) of an isolated 
mountain the waves had wave lengths of 10 km and amplitudes up to 4 km, which is 
comparable to the wavelength and amplitude observed in the laboratory when scaling km to 
cm. Due to the complex topography in the Alps the wave structure in the laboratory 
experiment is of course idealized. 
 
Nonlinear advection, important for turbulent transport and eddy fluxes (Sprenger 2008) or 
finite amplitude wave effects (Chapter 6), have been neglected so far. Baines (1995) 
emphasized the importance of these features for certain flow regimes (section 4.5). 
Grimshaw (1986) simulated gravity waves including these effects with the Korteweg-de-Vries 
(KdV) equation (Fig. 4.2). Results can be a solitary or a cnoidal wave referred to as undular 
bore (Grimshaw 2007). In the simulation, the undular bore travels downstream as a wave 
train with decaying amplitude, as observed in the laboratory experiment here. Studying 
undular bores is a first step towards hydraulic jumps covered in the following section. 

 
Fig. 4 .2: Numerical s imulation of  the Korteweg -de-Vries equation showing a decaying 
undular bore downstream  and an undamped bore upstream  with a vertical time axis . 
(Grimshaw & Smyth 1986)  
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4.2 Hydraulic Jump 

Hydraulic jumps occur in the atmosphere, oceans and rivers (Gohm 2008, Cohen 2008).  A 
common example of a hydraulic jump is the roughly circular stationary wave that forms 
around the central stream of water in a sink. The jump is at the transition between the point, 
where the circle appears still and where the turbulence is visible. Opposed to continuous 
energy transformation like in an undular bore, turbulence is a characteristic of larger 
amplitude hydraulic jumps (Chapter 2), which are also referred to as turbulent bores 
(Simpson 1997). Pulling the mountain faster or decreasing water height transformed the 
undular bore seen in section 4.1 to a hydraulic jump. 
 

 
Fig. 4.3: Schematic of a propagating h ydraulic jump (2) that evolved  
downstream and traveled away from the mountain (1) with velocity v j ,  

jump height h j ,  two cross section (a) and (b).  

 
The jump can be characterized by its jump height hj and its velocity vj (Fig. 4.4a). 
Furthermore, a cross section upstream (Fig. 4.3 - b) with water depth hb and flow velocity vb 
were compared to a cross section downstream (Fig. 4.3 - a) with water depth ha and flow 
velocity va. In the experiment a propagating (Fig. 4.4a) and a stationary jump (Fig. 4.4b) were 
observed (Tab. 4.2). 
 

 
Fig. 4.4a: Propagating hydraulic jump . 
Mountain is  moving from left to right.  

 

 
Fig. 4.4b: As in Fig . 4 .4a but for a s tationary jump. 
The mountain is  moving slower than in Fig.  4.4a 
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Hydraulic Jump 
 
Continuity Equation  consthvQ     
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(Eq. 4.7) 

The propagating jump (Fig. 4.4a) had a non dimensional speed between 0.1 and 0.3 (Tab. 
4.2) downstream of the mountain. This is the speed of the hydraulic jump relatively to the 
shallow water velocity (Section 3.1). In the stationary jump case (Fig. 4.4b) ha/hb = 0.5 while 
in the propagating case ha/hb = 0.4 (Tab 4.2). The jump velocities match the expected 
calculated values (Baines 1995) further discussed in the flow regime diagram (Section 4.5). 
The jump heights are slightly below the theoretical values in the diagram due to 
measurement errors of ha caused by a turbulent flow in the downstream cross section (Fig. 
4.4) and variations in the Froude number, owing to not-constant pulling speed during the 
experiments (Excel Tables, DVD). 
 

 Propagating Jump 
(Fig. 4.4a) 

Stationary Jump 
(Fig. 4.4b) 

Froude Number F 0.7 0.4 

Jump Speed  0.2 - 

Jump height 0.4 0.5 

Dissipated Energy ΔE *J/kg] 5.5 4.1 
Table 4.2: Measured parameters in the hydraulic jump experiment.  

The non dimensional jump speed is defined as         

and the relative jump height as  h j/ha . 

 
The flow evolution and development of the jumps can be described as follows. Water flows 
over the mountain and potential energy is transferred into kinetic energy (Fig. 4.4). The fluid 
speed can be calculated with the continuity equation (Eq. 4.5). Above the mountain at a 
critical water height hc the flow velocity vc was equal to the shallow water wave speed 
(Section 3.1). As the water flows downstream the mountain, it accelerates further to a 
supercritical state, where the fluid velocity is larger than the shallow water wave speed. This 
supercritical flow proceeds down the mountain slope and reaches the relatively slower fluid 
equal in velocity magnitude to the pulling speed V, which was below shallow water wave 
speed defined as subcritical flow (Landau & Lifschitz 1987). The rapid braking of the 
supercritical flow leads to turbulence in the jump region (Fig. 4.4). Using momentum 
conservation (Eq. 4.6) the dissipated kinetic energy (Eq. 4.7) could be calculated (Tab. 4.2) as 
in Cohen (2008) and was further analyzed in computer simulations (Chapter 6). Table 4.2 
shows that more energy dissipated in the propagating jump. 
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4.3 Blocking 

Upstream effects for mountain flow due to blocking have been investigated in the laboratory 
(Long 1954, Baines 1987) and observed in the atmosphere (Smith 2005). Here, in the MIM 
laboratory blocking experiments were conducted with mountain I and mountain II. To 
generate a bore upstream, high Froude numbers above 1 were crucial (Tab. 4.3). A water 
depth of H = 3.0 ± 0.1 cm and an average pulling speed of V = 66 ± 1 cm/s were used. Under 
these conditions a transition (Tab. 4.3) between an undular bore (Fig. 4.5) and a turbulent 
hydraulic jump upstream could be observed comparable to Long’s experiment (1954). 
 

 
Fig. 4.5: Undular bore upstream. Mountain I  is moving from left to right.  

 
Initially water accumulates upstream of the mountain until an undular bore forms and 
travels upstream. A transition to a turbulent bore occurs when the Froude number is above 
1.5 (Tab. 4.3). As described in Sprenger (2008) the Froude number is also an indicator for 
advection, which increases at higher Froude numbers. Obviously more water is advected at 
higher pulling speeds and kinetic energy of the fluid particles increases. The speed of the 
bore is above shallow water wave speed and increases further (Tab. 4.3). The energy 
transfer cannot occur with an undular bore anymore until it becomes turbulent. 

 

Marker Position Froude Number F Flow Regime Bore Speed 

4 1.1 undular bore 1.4 

5 1.2 undular bore 1.5 

6 1.3 hydraulic jump 1.7 
Table 4.3:  Froude number, flow regime, and bore speed 
relative to the shallow water wave speed  are l isted 
when the mountain crosses the markers  4-7.  

4.4 Supercritical Flow 

Wave steepening and wave breaking are important concepts in the atmosphere (Smith 1977, 
1979). They are nonlinear phenomena responsible for energy dissipation (Cohen 2008). In 
the laboratory wave braking (Fig. 4.6) was observed as well as supercritical flow (Fig. 4.7), 
which will be studied further in a two layer system (Chapter 5). 

 

 
Fig. 4.6a: Partial blocking upstrea m. 
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Fig. 4.6b: Wave steepening.  

 

 
Fig. 4.6c: Initial wave breaking.  

 
In this experiment mountain I was pulled with an average velocity of 145 ± 1 cm/s through 
water with an undisturbed depth of H = 6.1 ± 0.1 cm, which lead to a non dimensional 
mountain height hm/H of 0.7. To have a better visible water surface, the water was colored 
red. A wavelength in size comparable to that of the obstacle (Smith 1979) indicates H   λ, in 
consequence the flow was non dispersive (Cohen 2008) and the wave did not spread. First 
partial blocking upstream the mountain was observed (Fig. 4.6a). While more water was 
advected, the wave began to steepen (Fig. 4.6b) and showed a typical shape described 
theoretically by Cohen (2008) until the wave began to break (Fig. 4.6c) at a relatively high 
Froude number (Tab. 4.4) and the energy dissipated into turbulence. 
 
 

Marker Position Froude Number F Flow Regime 

2 1.6 partial blocking 

4 2.1 wave steepening 

6 2.0 breaking 
Table 4.4: Wave breaking at high Froude numbers.  

 
One more experiment was conducted with the same water height, but a faster average 
speed of 260 ± 0.1 cm/s, which lead to a high Froude number of 3.4. Under these conditions 
a solitary wave (Fig. 4.7) above the mountain developed like in experiments by Baines (1987) 
and was also expected for a supercritical flow regime in the diagram (Fig. 4.8). 
 

 
Fig. 4.7: Supercritical flow.  

 
In the following section all experimental results will be compared to a general theory by 
Baines (1995) and plotted in a diagram (Fig. 4.8) of the possible flow regimes (Tab. 4.5). 
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4.5 Flow Regime Diagram 

In this section the goal is to look back at the single layer experiments with a broader picture 
in mind (Tab. 4.5). A general analysis (Houghton & Kasahara 1968, Long 1954, Baines 1987 
and 1995) of momentum conservation (Eq. 4.6), continuity (Eq. 3.1) and Bernoulli equation 
(Eq. 3.2) reveals the possible flow regimes in a diagram (Fig. 4.8). In numerical studies it was 
used by Smolarkiewicz (1996) and Wedi (2003). In operational forecasting the dependence 
of the flow regime on Froude number and mountain height might be useful to predict 
hazards like rotors (Chapter 2) for pilots. 

 

 
 

Fig. 4 .8: Flow regime diagram (Houghton & Kasahara 1968). The f low strongly 
depends onFroude number (vertical axis) and non dimensional mountain height 
(horizontal axis).  Basically four different flow regimes are present in this diagram: 
 I) subcritical flow below the parabola,  II) total blocking in the right triangle, III) 
partial  blocking with hydraulic jumps inside  the parabola, IV) supercritical  flow in 
the white area above the parabola . Inside the parabola the solid l ines indicate 
relative jump speed compared to shallow water  velocity and the dashed lines show 
the position of  a stationary jump compared to total mountain height. Each colored 
box represents the experiments presented in sections 4.1–4.4. For each experiment,  a 
range of  Froude numbers and non -dimensional heights is  given,  owing to non-
constant pulling speed and blocking effects altering the fluid depth.   
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Besides the typical subcritical (Tab. 4.5 - I) and supercritical flows (Tab. 4.5 - IV) over an 
obstacle described for example by Landau & Lifschitz (1987), generally more flow regimes 
can be possibly differentiated further in the diagram above (Fig. 4.8). Schematically, the flow 
regimes were described by Baines (1995) and are presented in the following table: 
 

 
I) subcritical flow 
Above a certain mountain height and 
Froude number a wave train is visible 
(Baines 1995) within the subcritical 
regime. 
 

 

 
II) total blocking 
Here a bore upstream of the obstacle 
develops. It can be undular or turbulent 
depending on Froude number. 
 

 

 
III) partial blocking & hydraulic jump 
The flow is blocked, a rarefaction 
(Baines 1987) develops upstream and a 
hydraulic jump forms downstream. 
 

 

 
IV) supercritical 
A solitary wave forms directly above 
the mountain. 
 
 

 

Tab. 4.5:  Schematic of flow regimes by Baines (1995) . 
 

The experiments in the MIM laboratory here (Tab. 4.6) agree very well with the diagram (Fig. 
4.8) and it was useful for adjusting Froude number and mountain height to show certain 
Föhn features (Chapter 2) like hydraulic jumps (Section 4.2) or lee waves (Section 4.1). 
 

Box Color Flow Regime Section Description 

Green I 4.1 Lee Wave 

Yellow II 4.2 Stationary Hydraulic Jump 

Blue II 4.2 Propagating Hydraulic Jump 

Black IV 4.4 Wave Steepening 

Brown IV 4.4 Supercritical Flow 
Tab. 4.6:  Experiments  conducted in the MIM laboratory and presented in the diagram above.  

 

The blocking experiment described in section 4.3 was outside the range plotted in Figure 4.8. 
It would be in the partial blocking area within the parabola with a downstream & upstream 
propagating hydraulic jump with center coordinates (height, Froude number) = (1.4, 1.2). 
The position of the stationary jump (Fig. 4.8 - Yellow Box) is a little bit overestimated. Due to 



20 
 

turbulence, the beginning of the hydraulic jump was hard to measure. Together with a 
slightly varying pulling velocity this might be the cause for the mismatch. The propagating 
jump (Fig. 4.8 - Blue Box) travels with a velocity between 0.1 and 0.3 (Tab. 4.2), which agrees 
well with the predicted velocity between 0.2 and 0.4 for the jump in the diagram (Fig. 4.8). 
Due to the inertia of the water, blocking effects reduce for higher flow velocities and thus for 
higher Froude numbers and supercritical flow. This explains why the non dimensional 
mountain height is sharper for supercritical flow (Fig. 4.8 - Brown Box). 
 

Wind speed [m/s] Critical Layer [km] Froude number 

80 4 0.4 

40 3 0.2 

20 10 0.1 
Tab. 4.7:  Maximum Froude numbers for a single layer.  
The height of the fluid is determined by the critical layer.  

 
Of course, the single layer system can only be a first approximation to the atmosphere. Long 
described the single layer as the troposphere (1954) before he studied multi layer systems 
and modeled a continuously stratified atmosphere (1955). Table 4.7 shows the Froude 
numbers expected for typical single-layer flows in Alpine regions for a mountain height of 5 
km (Mont Blanc). As can be seen, the Froude numbers are at or below 0.4, meaning that only 
subcritical flow (Section 4.1), partial blocking (Section 4.2) with a stationary hydraulic jump 
and total blocking (Section 4.3) flows would be expected. Two layer systems, which are more 
similar to the atmosphere, are observed in the following Chapter. 
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5. Laboratory Results for a Two Layer Model 

The vertical structure of the atmosphere is of course more complex than the model 
experiments in the laboratory presented in the previous Chapter. Only certain idealised 
configurations can be studied here which will allow an understanding of the more 
fundamental dynamics of flow over an obstacle. A vertical profile of the atmosphere above 
the Mont Blanc area during a Föhn event has been measured (Fig. 5.1) during the MAP 
campaign (Chapter 2). Wave structures were visible in the clouds and cloud parcel 
displacements (Smith 2002). Up to three homogeneous layers were observed in the vertical 
profile (Smith 2005). The next step in the laboratory model here is to use a two-layer fluid 
whose interface is comparable to a temperature inversion in the atmosphere, characteristic 
for observed Föhn events (Smith 2002, 2005). The interaction of an inversion with lee waves 
has been modeled numerically (Vosper 2006). Typically a temperature increase of order 2% 
occurs within the inversion layer (Smith 2005). 
 

 
 

Fig. 5 .1: Lidar backscatter profile over the Mont Blanc topography ,  taken from  
the DLR falcon. The color bar indicates optical thickness of  the cloud.  Also  
deeper clouds are visible  below a strong cirrus layer. The black l ines show 
calculated vertical displacements of cloud parcels  (Smith 2002).    
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Important Quantities for the Two Layer Fluid 
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5.1 Nondimensional Parameters for a Two Layer Fluid  

Not only can two layer systems be used to adequatly capture certain dynamics of the 
atmosphere, they also are observed in the ocean, for example when a cold river from a 
mountain glacier flows into the ocean water in a Fjord in Norway. When a boat travels over 
the water, the two fluids with a slightly different salt concentration interact and surface 
waves form on the layer separating the two fluids (Cohen 2008). In order to describe the two 
layer system appropriately it is necessary to introduce non dimensional variables as done for 
the single layer fluid (Chapter 3.1). This way, numerical simulations (Chapter 6) and 
observations (Chapter 2) from nature can be compared to laboratory studies.  
 

 
Fig. 5.2: Schematic of the two layer f luid. Each layer 
with density ρ1/ 2 ,  height h 1/ 2  and total  fluid height H=h 1+h2 .   
 

As in Baines (1987, 1995) a Froude number will be defined similar to the one in the single 
layer system. Furthermore a Blocking number (Baines 1987) also referred to as inverse 
Froude number Fi (Sprenger 2008) which depends on Brunt Väisälä frequency N, mountain 
height hm and flow velocity V is used here. The Brunt Väisälä frequency depends on 
stratification, which is the gradient of the density profile and gravity. Here,      is the 
density which is a function of height, z is the vertical coordinate, and    a reference density 
on the bottom of the tank where    . The shallow water velocity for linear waves V0 is 
different compared to the single layer system (Chapter 3.1) due to the density difference 
with the overlying fluid being lower. To allow different heights of the two layers, h1 is the 
height of the lower layer and h2 the height of the top layer. Finally, the density in the lower 
layer is 1  and in the top layer it is 2  (Fig. 5.2). 
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5.2 Experiment Setup  

The two layer model provides the possibility to study lee waves and hydraulic jumps as 
before, but compared to the single layer flow, the motions will appear in slow motion for the 
observer (Simpson 1997). The acceleration due to gravity decreases and the Froude number 
changes. For simplicity reasons it is convenient to look at a two layer system with two layers 
each of height h (Baines 1987). In this case the flow diagram shown in Fig. 4.8 is modified 
(Section 5.3). Possibly, finite amplitude effects can be observed (Baines 1995), like amplitude 
growth for certain flow velocities, typical for nonlinear waves (Goler 2004).  
 
Experiments examining flow over an obstacle in a 
two layer fluid have been conducted by Long 
(1954). He suggested using salt and tap water, 
whose density difference would be closer to that 
observed in the atmosphere than the fluids he 
used. Furthermore, the salt water can be colored 
with food coloring and is no harm for the 
environment and the students during the 
experiment. 
 
First, two methods to create a stable two layer 
fluid in the tank will be addressed here: a gravity 
current (Fig. 5.5) to produce the denser layer 
(Simpson 1997), or a controlled release of the 
denser fluid using a hose at the bottom of the 
tank (Fig. 5.3). The advantage of the first method 
is that it requires less time to set up than for the 
second method. Both methods will be 
implemented here to examine which one 
provides results consistent with those of Baines 
(1995.) 
 
To produce the stable layer using a controlled 
release of the denser fluid, the tank is first filled 
with water. The volume of the stable layer is 
calculated based on the dimensions of the tank 
(Chapter 3), and the required density produced 
by adding a sufficient amount of salt along with 
the food coloring. This fluid for the denser layer is 
mixed in a large bucket. 
 
Next, the salt water is poured into a smaller 
container on the tank (Fig. 5.3 - 1) which has a tap 
(Fig. 5.3 - 2) with a hose (Fig. 5.3 - 3) attached to 
the bottom of the tank. The tap allows the rate of 
flow to be regulated. To minimize the turbulent 
mixing between the inflowing salt water and the 
water, a mean flow rate of half a liter per minute 

 

 
Fig. 5.3:  Container (1) set on top of  the 
tank.  A little hose is fixed on the tank 
bottom (3) and connected to the 
container with a tap (2) .  

 

 
Fig. 5.4:  Turbulent mixing of salt water 
from the hose, which slowly sets on the 
tank bottom with tap water above.  

 

 
Fig. 5.5: Gravity current – red colored 
salt water is propagating into the 
lighter tap water from left to right.  
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is used here, slower at the beginning and a little 
faster as the depth of the dense layer increases. 
 
The turbulent mixing (Fig. 5.4) occurs through 
Kelvin Helmholtz instability, especially at the 
beginning, when the bottom layer is very thin. 
 
Diffusion, which acts on longer time scales, occurs 
as the denser fluid spreads slowly along the tank 
bottom reaching the ends of the tank. The effect 
of diffusion can be seen in the following example. 
The stable layer has a density 2% greater than 
that of water. After the dense layer (colored red) 
reached a height of 2 cm, the height of both 
layers is measured every 20 minutes (Fig. 5.6). 
The mixing produced a much thicker red layer 
than expected. With 16 liters of salt water the red 
layer should be about 2.5 cm high in the end. 
However, in the experiment it reached, due to 
diffusion, a height of 4 cm (see Fig. 5.6). 
 
In order to produce the stable layer using a 
gravity current, tap water is filled into the entire 
tank up to a height of 7.5 cm. At 1/3 of the tank 
length a dam wall is installed and the necessary 
amount of salt (28.5 g/liter) is added along with 
some food coloring into the smaller part of the 
tank. After mixing the fluid with a wooden spoon 
to dissolve the salt and then letting the water 
settle, the separating wall is lifted up quickly. A 
gravity current (Fig. 5.5) travels to the other side 
of the tank within 30s, internal surface waves 
(Cohen 2008) form due to reflection of the gravity 
current at the tank wall until equilibrium is 
reached after 5 min. 

 
Fig. 5 .6: Height of the red layer every 20 
minutes . The black shows the total 
water height H. Red dots indicate the 
height of  the denser layer on the left  
side and red dashes  for the right s ide.  
The red l ine shows the ideal red layer 
height at each timestep without mixing.  

 

  
Fig. 5 .7: Density profile from the bottom 
of the tank until salinity approaches 
0%. The dark blue line shows the profile 
after fil ling denser f luid slowly into the 
tank with the hose.  Orange is the 
average profile  between left and right 
side after an equilibrium stable layer 
formed after the gravity current. The 
light blue line shows the profile of the 
gravity current after 5 experiments 
have been conducted.  

 
Compared to the time consuming method before, which used up more than 2 hours, the 
gravity current is much quicker and less turbulent diffusion takes place (Fig. 5.7). The density 
profile is a lot sharper, even after the pulling experiments have been conducted. 
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5.3 Two Layer Results 

Similar Föhn features can be reproduced as for the single layer system (Baines 1995). In the 
MIM experiments non linear effects like wave amplification (Goler 2004), only visible in this 
two layer system (Baines 1987) were the focus of the observations in this section. 
 

 
Fig. 5.8: Amplifying lee wave when mountain is pulled from left to right.   

 

 
Fig. 5.9: Wave dissipation,  when the mountain is pulled to the left quickly.  

 
For waves travelling with the same speed as the mountain a growth in amplitude over time 
is anticipated (Goler 2004). To validate this, the mountain is first pulled quickly with a speed 
of 10 cm/s, where lee wave forms (Etling, 2010). After the first wave cusp is visible, the 
mountain is pulled at a speed comparable to the travelling wave speed of about 4 cm/s, 
which is of order 10 smaller than in the single layer experiment. The reason is the reduced 
gravitational acceleration within the two layer system. Through turbulent feedback, the 
wave becomes more apparent (Fig. 5.8) and also increases in amplitude (Fig. 5.10) as 
anticipated for this velocity. This effect is similar to resonance in classical mechanics, where 
amplification occurs only for certain frequencies in an oscillating system. In contrast to the 
single layer experiment, the wave is now neither laminar nor turbulent, but dominated by 
both effects. 
 
If the mountain is pulled faster than the wave 
velocity, the wave cusp widens (Fig 5.9). In one 
case the wave has a constant velocity of 5 cm/s, 
while the mountain has an average velocity of 7 
cm/s. The wave amplitude is smaller and the 
wavelength larger than in the experiment before, 
where mountain pulling speed and wave velocity 
coincided. The wave structure is more laminar. 
The further the wave travels thus becoming 
further separated from the mountain, the more it 
dissipates. The two experiments show the 
processes of wave dissipation (Fig. 5.9) and 
steepening (Fig. 5.8). Measuring the wavelength 
of the trailing cusps in both experiments, which 
decreases, shows the dispersive effect already 

 
Fig. 5.10: Growth of the first wave peak 
measured every 10 cm. The red l ine 
indicates the maximum height of the 
measurement,  the blue line the minimum 
measured height and the black line  the 
arithmetic mean. The measurement 
error becomes smaller  over time and the 
interface sharper as the wave develops 
further.  
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observed for a single layer (Chapter 4.1). Wave 
steepening, dissipation and dispersion determine 
the development of a wave (Baines 1987). 
 
For lower velocities of the mountain a hydraulic 
jump forms (Fig. 5.11, Fig. 5.12) in the lee of the 
mountain as discussed with numerical and 
laboratory experiments by Etling (2010). In the 
experiments here, partial blocking and 
supercritical flow have been covered for a Froude 
number between 0.3 and 0.8 and a non 
dimensional mountain height of 0.3. The results 
agree well with diagrams by Baines (Fig. 5.12) and 
Etling (Fig. 5.11) for a two layer fluid with two 
equally high layers, where both rotors and lee 
waves are possible in this partial blocking regime. 
 
In Baines diagram (Fig. 5.12) only flow with a non 
dimensional mountain height below 0.5 is 
possible for the Alps, if the upper layer represents 
the top of the troposphere up to about 10 km, 
the interface at about 5 km to have two equally 
high layers, and a maximum mountain height of 
about 5 km in the Alps. In the experiments 
presented here only Froude numbers below 1 
were covered with pulling velocities below 10 
cm/s. By increasing the velocity, a supercritical 
flow with a Froude number above 1 can easily be 
simulated. A lower pulling velocity is necessary 
than in the single layer experiments (Section 4.4). 
Supercritical flow can occur in the Alps (Tab. 4.8). 
 
Additional experiments have been performed 
with a range of layer depths and a smaller 
mountain, and these are presented in the 
attached DVD. These experiments highlight 
supercritical flows and upstream propagating 
bores. A 3-layer experiment was also performed 
and shown in the DVD (Fig. 5.13). However, to 
interpret these experiments quantitatively, many 
experiments would be necessary. And as each 
experiment requires about 1-2 kg of salt, this was 
not feasible, and so the videos are retained, but 
the results not presented herein. Furthermore, 
during the summer semester students’ 
laboratory, where usually 10 groups participate, 
an inappropriately large amount of salt between 
10–20 kg would be necessary. 

 
Fig. 5.11: The lines separate flow 
regimes as obtained in the numerical  
simulations of Vosper (2004): lee waves 
from rotors (solid  line), and rotors from 
hydraulic jumps (dashed line). The green 
box shows the first experiment (Fig.  5.8).  
The smaller blue box is for the second 
experiment (Fig. 5 .9) . Brown and black 
are subcritical f low experiments (DVD).  
 

 
Fig. 5.12: Flow regime diagram by 
Baines (1987) for two layers with the 
same height . I) Subcritical f low, II) Total 
blocking,  III & shaded area) partial 
blocking.  The green box shows again the 
first experiment and the blue box the 
second one. Brown and black show 
subcritical  flow experiments  (DVD).  

 

 
Fig. 5.13: First multi layer experiments  
with a small mountain .  
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Wind speed [m/s] Critical Layer [km] Froude number 

80 4 2.8 

40 3 1.6 

20 10 0.5 
Tab. 5.1:  Maximum Froude numbers for a two layer system. 
The height of the fluid is determined by the critical layer.  
 

Table 5.1 shows the Froude numbers expected for typical two-layer flows in Alpine regions 
for a mountain height of 5 km (Mont Blanc). Due to the use of the reduced gravity in the 
Froude number, large Froude numbers are permitted compared with the single-layer 
experiments in Chapter 4. This means that all flow regimes would be expected to occur.  
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6. Numerical Simulations of the Föhn in a Tank 

To examine the experiment from another point of view, numerical simulations are 
conducted and presented herein, which can be repeated with changes to parameters like 
pulling velocity and critical layer height. Eulag, a geophysical flow model is used, which can 
handle laboratory scales of mm as well as large meteorological scales (Prusa 2007). Flows 
over an obstacle with a single layer have already been conducted by Wedi & Smolarkiewicz 
(2003). Here, the two layer experiment is modeled with an inversion layer (Vosper 2006, 
Etling 2010) as in the laboratory. This simulation is included in the students’ tutorial 
(Appendix A) to motivate the use of computer simulations and improve their understanding 
with the background knowledge of a similar laboratory experiment (Chapter 3-5) that they 
have already conducted. 
 

 
Fig. 6 .1a: Numerical s imulation of  a two -layer flow over  
a hill . A f irst wave cusp is  visible,  after 1.2s.  

 
Fig. 6 .1b: After 1.8s a second cusp forms.  

 
Fig. 6.1c: The wave clearly amplified after  2.4s.  

 
The simulation is set up in two-dimensions with a grid resolution of 1 mm and the size of the 
tank as specified in Chapter 3. An absorbing sponge is introduced above 20 cm in the vertical 
and at the ends of the tank. A Gaussian shape mountain is used with a full width at half 
maximum comparable to the mountain in the two layer experiment. The lower boundary 
with the topography is time dependent, so that the mountain could move. Using the 
parabolic shape of the mountain in the experiment lead to difficulties at the foot of the 
mountain, because the topography function needs to be smooth and differentiable in every 
point. 
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Two different background profiles of the potential temperature for water are used, the first 
having an inversion (Fig. 6.1) and the second a continuous stratification (Fig. 6.2). The green 
lines are a passive scalar, initialized with the potential temperature field. In the two layer 
simulation, the potential temperature is 10 % smaller in the lower layer than above the 
inversion. A critical layer thickness of 5 cm lead to a Brunt Väisälä frequency of N=4 s-1. 
Compared to the laboratory model, where N=2 s-1, the critical layer in the simulation is  
more stable. To have similar Froude numbers and wave velocities (Chapter 5.1), the 
velocities have to be adjusted to the greater potential temperature difference. The scaling 

factor is 2.2=        . In the simulation the mountain moves quicker than the wave and 
it is also moving quicker relative to the mountain in the laboratory experiments (Fig. 5.8, Fig. 
5.9). In the two layer simulation shown in Fig. 6.1 the mountain moves to the left with a 
velocity of 25 cm/s a background flow with 5cm/s to the right lead to a total velocity 
between fluid and mountain of 30 cm/s. A background flow is introduced to reduce the 
speed of the mountain and thus make the flow more laminar.  
 
After 1.2 s (Fig. 6.1a) a single wave cusp forms in the two layer simulation. The second cusp 
becomes visible in Fig. 6.1b. After 2.4 s (Fig. 6.1c) the wave clearly amplifies and the distance 
between mountain and wave increases further. A closed loop of passive tracer above the 
wave indicates a rotor (Fig. 6.1b) in the neutral layer above the inversion. This is one 
problem with the two neutral layers separated by an inversion in the laboratory experiment 
as well, as in the numerical simulation. Initially small turbulent eddies form in the shear 
layer, subsequently amplify and grow within the neutral layer, leading to mixing between 
the two layers. To find out the right parameters for the two layer experiments (Fig. 5.8 and 
Fig. 5.9), the simulations provided good assistance.  
 

 
Fig. 6.2:  As in Fig. 6.1 but for a continuously stratified  
fluid with the mountain moving from right to left.   

 

The continuously stratified model (Fig. 6.2) is simulated with fewer processors and is quicker 
than the two layer model (Tab. 6.1). It can also be set up on a personal computer and run 
serially for the students’ laboratory (Andreas Dörnbrack, personal communications). In the 
hydraulic jump region right of the mountain, the shading shows turbulent kinetic energy. 
Above a height of 20 cm gravity wave development is clearly visible. A phase shift between 
the lee waves at different heights can be observed. 
 



30 
 

A numerical model solves the necessary equations of motion. For flow over an obstacle, the 
shallow water equations can be used (Erhardt 2007), the anelastic equations (Prusa 2007) 
used here, or the more sophisticated Korteweg-de Vries (KdV) equation (Grimshaw 2007). 
Depending on which equations are used for the flow, the model output is different 
(Smolarkiewicz 1996). In consequence there is no perfect numerical model. They are 
approximations to reality and only in combination with laboratory studies (Chapter 3-5) and 
real world observations (Chapter 2) do they increase the understanding. 
 
 

 Two Layer Model Stratified Stratified 

Computational Time 6h, 50min 7h, 20min 1min 

Number of Processors 128 64 64 

Resolution 1 mm 1mm 1cm 

Model time 3s 20s 30s 
Tab. 6.1:  Computational Time, Processors and Resolutio n on DKRZ Supercomputer .  
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Conclusions 

The aim of this work has been to develop an experiment in the MIM laboratory to 
investigate the dynamics of the Föhn. First, a number of Föhn theories are presented. The 
hydraulic Föhn theory (Schweitzer 1953), which covers many of the Föhn features, like 
gravity waves, hydraulic jumps, and blocking effects discussed in Chapter 2, is the basis for 
this thesis and the laboratory experiments. These features are often made visible by 
lenticular clouds, cloud lines or rotor clouds in the atmosphere. 
 
To understand the hydraulic Föhn theory and the basic fluid mechanics (Long 1953) of the 
flow over a mountain, which is responisble for the shape of these clouds, a simple laboratory 
experiment is set up in Chapter 3 for the students. The basic idea is that the flow of air over 
a mountain in the atmosphere can be shown to be similar to the flow of water over a moving 
obstacle in the laboratory (Section 3.1). 
 
Improvements can be done concerning the pulling mechanism of the mountain (Section 3.3) 
in the experiment, which often leads to non-constant pulling speeds (Section 4.5). Other 
than that, the modelling clay, the simple set up of the mountain on a lego plate proved to be 
flexible and offers good results (Chapter 4) that show the basic Föhn features which can be 
compared to a general theory by Baines (Section 4.5). Single layer experiments (Chapter 3-4) 
have been the focus of this thesis. 
 
More complex experiments are presented in Chapter 5, where a two layer fluid is set up. The 
interface between the two fluids (Section 5.2) is comparable to an inversion in the 
atmosphere, where gravity waves form (Smith 2006). The best and quickest method to set 
up this two layer system has been shown to be done using a gravity current (Section 5.2). In 
future work, more experiments can be conducted, to cover a number of flow regimes 
(Section 5.3) and different critical layer heights. However, with a density difference of only 
2% and two neutral layers above each other, the interface is still less stable than in 
experiments by Long (1954) or Etling (2010). 
 
In the end, a simulation of the laboratory experiments with Eulag (Chapter 6) is presented. It 
can be a basis for student experiments on the computer (Appendix A) to study the flow over 
a mountain from another point of view. To run it on a university computer, a serial code can 
be set up. A DVD with films (Appendix B) of the laboratory experiments has been created 
and can be used for teaching purposes.  
 
Hopefully the new experiment presented in Appendix A can become part of the students’ 
laboratory to increase the understanding for mountain meteorology and the analogies in 
physics. It seems impressive, how much the flow in the Eisbach in Munich has in common 
with the Föhn in the Alps. 
  



32 
 

Appendix 

A) Laboratory Tutorial for the Students 
 
A short extract from the Students’ Laboratory Tutorial: 
 

 

Um Alpen und Labor vergleichen zu können bestimmen Sie die Froudezahl F = v/    

bei bestimmten Strömungsverhältnissen und passen die Laborbedingungen 
entsprechend an! 
 

1 Schicht Alpen Labor 
Geschwindigkeit 30 m/s 30 cm/s 

Höhe der Inversion 4 km ? 

Froudezahl 0.2 0.2 

 
Labor Experiment 
Setzen Sie den vorgefertigten Berg aus Plastilin  in den Tank. Befestigen Sie die 
Schnüre und die Halterungen wie folgt: 

 
(1) Berg, (2) Drachenschnur, (3) Saughaken, und(4)Schraubhalterung.  

 

 Die Befestigung wird auf beiden Seiten des Tanks angebracht und auf beide 
Seiten geht jeweils eine Drachenschnur vom Berg weg.  

 Füllen Sie nun den Tank bis zu der berechneten Höhe. Es sollte ein Versuch bei 18 
cm und einer mit etwa 6 cm Wasserhöhe durchgeführt werden. 

 
Simulation am Computer 
Der Versuch wird im Computer nachgestellt. Rufen Sie dazu das Eulag Programm auf. 
Dort können Sie Windgeschwindigkeit u00 und Berg Höhe amp beliebig anpassen. 
Ihr Tutor hilft Ihnen beim Ausführen des Programms! Was beobachten Sie in 
geringer Höhe, was in großer Höhe? Welche Erklärung gibt es dafür und wie passt es 
zu den Laborergebnissen? 
 
Connecting the Dots 

 Wie entsteht eine Lenticularis Wolke, wie eine Föhnmauer? 

 Berechne die Froudezahl für die Strömung im Eisbach! 
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B) Föhn Experiment Videos 
 
This is the DVD menu with clips of the experiments: 
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